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Galaxy Clusters:

»
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* Consists hundreds to thousands - Virgo Cluster
of galaxies . s e s

* Mass: M,q0. = 10*Mg ”

* Radius:: 2 < Ry50c=< 5 Mpc

* Higher densities than groups e
and contains mostly E’s and SOs

* They are the largest
gravitationally bound -

* They may not be complelely i e
virialized s .
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Galaxy Clusters How are they Measured in Galaxy clusters

Components:

« DM ~85% e Gravitational Lensing
* ICM~13% e X-ray and Radio
 Galaxies ~2% e Optical, IR, and radio
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== Mean DM: 85.95%
Mean Gas: 12.63%
Mean Stars+BHs: 1.34%
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most of the mass of the baryons are
invery hotgas T > 10°
Fully ionized hydrogen and helium

Normalized Baryonic Mass
=
o

X-ray
1. Bremsstrahlung (Thermal

electrons)
2. Metal line emission (such

asFe, Si, 0O, ...)

Surveys: Chandra, eROSITA, @
XRISM, ...
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How Galaxy Clusters are formed?

Dark Energy @ Cold Dark Matter:
Deriving the accelerated expansion of the universe slow-moving allowing formation of small structures

1. Initial Density Fluctuations

Tiny quantum fluctuations in the early Universe (seenin the

CMB) which grow under gravity

2. Growth of Dark Matter Halos
DM collapses first, forming gravitational wells > Gas
(baryons) falls into these wells > forms galaxies

3. Hierarchical Structure Formation

ACDM predicts a "bottom-up" scenario

small halos merge hierarchically to form larger halos
> groups > galaxy clusters

4. Role of Dark Energy (A)

*At late times (z< 1), dark energy slows down structure
growth
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Bullet Cluster

X-ray: hot gas, Chandra
Optical: Magellan and HST
DM: Blue, through weak lensing

During the collision, the hot gas is
slowed and distorted by a drag force
and resistance, while DM separates
from the normal matter.
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Relativistic electron j ==

Thermal e are accelerated:
1. Merger driven Turbulence

2.Shock acceleration

Chandra 0.5 Msec image

Radiation emitted from

R a d i O E m i SS i O n any part of trajectory
Electron with acceleration
L (L to B), velocity v,

( non _Th erma l) pit(.c:h angl()e o (not shown)

ICM is a plasma filled with MF
Primarily Synchrotron:
EM radiation emitted by relativistic N ——

electron in a magnetic field

Synchrotron

To observer

radiation \
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Radio Emissions in Clusters
RadioHalo |72

-Radio emissionin
white contours

Radio Relics

* Diffuse and located at
the cluster centers,
unpolarized

* Follows the ICM X-ray 0
distribution

* Formed via turbulent 1
reacceleration of the ICM
electrons

* Detected mostly in
massive merging clusters

* Diffuse radio synchrotron
emission

* Mpc sized, extended

* In cluster outskirts

* Strongly polarized

* Formed via cluster
shocks

* Shocks align MF >
strong polarized arc-

o like relics

Clarke & Ensslin (2006) &
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TNG-Cluster
observe clusters at a single 1 Gpc?® volume,
point in time x36 TNG300.
+
Information lost in
observations

| TNG—QIusth__

TNG300

B TNG300-1

zoom in simulation: BN TNG-Cluster

1. selected 352 halo in DM only at z=0
2.trace all DM particles to z=137

3. adaptive Oct-tree around each cluster
4.zoomed-in high resolution region are up
to 8192° particle ~ TNG300-1

5. Reconstruct a cosmological volume by
stitching and shifting the zoom box
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Result: 352 high-res cluster regions
at Z=O W|th lOg MZOOC :14.3 — 154‘M®
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Halo Mass Magoc [ 109 Mgyn |
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Inferring the Past Merging History of Galaxy Cluster

Galaxy
Cluster

ouster | (. [ .
(observables) Mgrgmg
Or Machine Learning Histo ry

MAPS
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Inferring the Past Merging History of Galaxy Cluster

Scalar Observable Properties

Galaxy

Cluster
Properties ‘ X-ray maps
(observables)
Or
MAPS Radio maps
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Lee+(2024) | ast Merger Histo ry

352 main zoom-in targets

Time of
Collision

Subcluster mass: M, > 101°M g

~2000 collisions with 0<z<1

Velocity Peri-
of center
collision distance

Mass
Ratio

Sub-
cluster
mass

Msooc [1014 Mo ]
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MainclusterlD = 0, SubclusteriD = 544613

4000 A Separation
Snap_coll = 69
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500 - for exact:
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Snapshot
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MainclusterIiD = 0, SubclusterIiD = 544613 MainclusterlD = 0, SubclusteriD = 544613
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But how?

Conditional Invertible Neural Networks
p(x,c) p(clx)p(x)
p(c) p(c)

P(x): prior
P(c): evidence (marginal distribution)

p(x|c) =

X . last merger history properties
C : condition (inputs)

p(c|x): likelihood
p(x|c): conditional probability distribution
= posterior
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But how?

Conditional Invertible Neural Networks

f(x,c) =z mbeddin
S ward pass L
Inverse sampling condition
fc,z) =x C
Posterior
1 e
p(x|c)
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But how?

Conditional Invertible Neural Networks

JO ORI @"“ :
f(x C) A mbeddin ]
Forward pass { l E '

,, Normalizing Flow -,

Inverse sampllng COﬂdlthﬂ
1
f- (c,z) = Multivariate Gaussian
e e Backward: negative log likelihood
1 Jacobian of f
p(x|c)
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https://github.com/janosh/awesome-normalizing-flows
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Galaxy

Cluster

Properties
observables

‘ X-ray maps

Or
maps

Radio maps




Options for X-ray or Radio maps:
* Putting the map directly into the
CINN (D: nxn)

* | Reduce its dimension by learning a

representation space (D: m < n?)
How? l

Self Supervised Learning Methods
e.g. contrastive learning
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Contrastive Learning

AN\

A \\\\\ N
Ny

A\

Positive; x* negative: x

score(f(z), f(27)) >> score(f(z), f(z™))

InfoNCE loss

Score of the Score of the N-1
positive pair Negative pairs




SImCLR:

A Simple Framework for Contrastive Learning

Score function: Cosine similarity

uTv

(V) = el

Affinity
matrix

Positive Pairs

=
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SImCLR:

A Simple Framework for Contrastive Learning

Score function: Cosine similarity

uTv

(V) = el

In the end:

You will have a representation space with similar pictures
close to each other in m dimensions (256, 512, ...)

In case of having access to labels, representation space
can be tested directly via nearest neighboring, UMAPS, or
hexbin color-coded charts by the quantitive labels
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Road Map

Goal: Inferring the merger history of Galaxy Clusters in TNG-Cluster

Use CINN to obtain full Input: | asEE
posteriors on merger »| Learned Representation
parameters Space
g Radio maps
Questions

What yields the most accurate inference of
merger properties ?

Radio maps or X-ray maps alone, Radio + X-ray?
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Summary

1. Galaxy clusters are the ultimate result of hierarchical structures in the ACDM cosmological frames.
2. Mostofthe mass of the ICM is hot gas which results in Bremstrehlung process producing X-ray emission.
3. Cluster mergers rank among the most energetic events since the Big Bang . This process accelerates the thermal
electrons in the MF of the ICM, resulting in Synchrotron emission:
shocks — Polarised Radio Relics
mergers
Turbulence — Diffuse Radio Halos
4. By applying machine learning on the simulation data, we can learn complex mappings between the observable
galaxy clusters properties or maps, to their underlying merger histories.
5. X-ray and radio maps are first passed through a contrastive-learning encoder, building a low dimensional
representation space, distilling high-resolution maps into feature vectors that capture the relevant structure.
6. Usingeither the scalar observables or the learned image embeddings as inputs, CINNs perform fast, exact Bayesian

inference: returning full posterior distributions over the unobservable merger parameters.
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